Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.095
Filtrar
1.
PeerJ ; 11: e14647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643630

RESUMO

Bactrian camels have specific mucosa-associated lymphoid tissue (MALT) throughout the large intestine, with species-unique cystic Peyer's patches (PPS) as the main type of tissue. However, detailed information about the molecular characteristics of PPS remains unclear. This study applied a transcriptomic analysis, untargeted metabolomics, and 16S rDNA sequencing to compare the significant differences between PPS and the adjacent normal intestine tissues (NPPS) during the healthy stage of three young Bactrian camels. The results showed that samples from PPS could be easily differentiated from the NPPS samples based on gene expression profile, metabolites, and microbial composition, separately indicated using dimension reduction methods. A total of 7,568 up-regulated and 1,266 down-regulated differentially expressed genes (DEGs) were detected, and an enrichment analysis found 994 DEGs that participated in immune-related functions, and a co-occurance network analysis identified nine hub genes (BTK, P2RX7, Pax5, DSG1, PTPN2, DOCK11, TBX21, IL10, and HLA-DOB) during multiple immunologic processes. Further, PPS and NPPS both had a similar pattern of most compounds among all profiles of metabolites, and only 113 differentially expressed metabolites (DEMs) were identified, with 101 of these being down-regulated. Deoxycholic acid (DCA; VIP = 37.96, log2FC = -2.97, P = 0), cholic acid (CA; VIP = 13.10, log2FC = -2.10, P = 0.01), and lithocholic acid (LCA; VIP = 12.94, log2FC = -1.63, P = 0.01) were the highest contributors to the significant dissimilarities between groups. PPS had significantly lower species richness (Chao1), while Firmicutes (35.92% ± 19.39%), Bacteroidetes (31.73% ± 6.24%), and Proteobacteria (13.96% ± 16.21%) were the main phyla across all samples. The LEfSe analysis showed that Lysinibacillus, Rikenellaceae_RC9_gut_group, Candidatus_Stoquefichus, Mailhella, Alistipes, and Ruminococcaceae_UCG_005 were biomarkers of the NPPS group, while Escherichia_Shigella, Synergistes, Pyramidobacter, Odoribacter, Methanobrevibacter, Cloacibacillus, Fusobacterium, and Parabacteroides were significantly higher in the PPS group. In the Procrustes analysis, the transcriptome changes between groups showed no significant correlations with metabolites or microbial communities, whereas the alteration of metabolites significantly correlated with the alteration of the microbial community. In the co-occurrence network, seven DEMs (M403T65-neg, M329T119-neg, M309T38-neg, M277T42-2-neg, M473T27-neg, M747T38-1-pos, and M482t187-pos) and 14 genera (e.g., Akkermansia, Candidatus-Stoquefichus, Caproiciproducens, and Erysipelatoclostridium) clustered much more tightly, suggesting dense interactions. The results of this study provide new insights into the understanding of the immune microenvironment of the cystic PPS in the cecum of Bactrian camels.


Assuntos
Camelus , Nódulos Linfáticos Agregados , Animais , Bactérias , Camelus/imunologia , Camelus/microbiologia , Ceco/imunologia , Intestino Grosso/imunologia , Nódulos Linfáticos Agregados/imunologia , Multiômica
2.
Sci Immunol ; 7(73): eabc5500, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35776804

RESUMO

T helper 17 (TH17) cells located at the Peyer's patch (PP) inductive site and at the lamina propria effector site of the intestinal immune system are responsive to both pathogenic and commensal bacteria. Their plasticity to convert into follicular helper T (TFH) cells has been proposed to be central to gut immunoglobulin A (IgA) responses. Here, we used an IL-17A fate reporter mouse and an MHC-II tetramer to analyze antigen-specific CD4+ T cell subsets and isolate them for single-cell RNA sequencing after oral immunization with cholera toxin and ovalbumin. We found a TFH-dominated response with only rare antigen-specific TH17 cells (<8%) in the PP. A clonotypic analysis provided little support that clonotypes were shared between TFH and TH17 cells, arguing against TH17 plasticity as a major contributor to TFH differentiation. Two mouse models of TH17 deficiency confirmed that gut IgA responses to oral immunization do not require TH17 cells, with CD4CreRorcfl/fl mice exhibiting normal germinal centers in PP and unperturbed total IgA production in the intestine.


Assuntos
Imunoglobulina A , Nódulos Linfáticos Agregados , Células Th17 , Animais , Antígenos/imunologia , Toxina da Cólera , Imunização , Imunoglobulina A/imunologia , Camundongos , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Células Th17/imunologia , Vacinação
3.
ACS Appl Mater Interfaces ; 14(9): 11124-11143, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35227057

RESUMO

Antigen delivery through an oral route requires overcoming multiple challenges, including gastrointestinal enzymes, mucus, and epithelial tight junctions. Although each barrier has a crucial role in determining the final efficiency of the oral vaccination, transcytosis of antigens through follicle-associated epithelium (FAE) represents a major challenge. Most of the research is focused on delivering an antigen to the M-cell for FAE transcytosis because M-cells can easily transport the antigen from the luminal site. However, the fact is that the M-cell population is less than 1% of the total gastrointestinal cells, and most of the oral vaccines have failed to show any effect in clinical trials. To challenge the current dogma of M-cell targeting, in this study, we designed a novel tandem peptide with a FAE-targeting peptide at the front position and a cell-penetrating peptide at the back position. The tandem peptide was attached to a smart delivery system, which overcomes the enzymatic barrier and the mucosal barrier. The result showed that the engineered system could target the FAE (enterocytes and M-cells) and successfully penetrate the enterocytes to reach the dendritic cells located at the subepithelium dome. There was successful maturation and activation of dendritic cells in vitro confirmed by a significant increase in maturation markers such as CD40, CD86, presentation marker MHC I, and proinflammatory cytokines (TNF-α, IL-6, and IL-10). The in vivo results showed a high production of CD4+ T-lymphocytes (helper T-cell) and a significantly higher production of CD8+ T-lymphocytes (killer T-cell). Finally, the production of mucosal immunity (IgA) in the trachea, intestine, and fecal extracts and systemic immunity (IgG, IgG1, and IgG2a) was successfully confirmed. To the best of our knowledge, this is the first study that designed a novel tandem peptide to target the FAE, which includes M-cells and enterocytes rather than M-cell targeting and showed that a significant induction of both the mucosal and systemic immune response was achieved compared to M-cell targeting.


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Administração Oral , Animais , Antígenos/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imunidade , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Ovalbumina/imunologia , Nódulos Linfáticos Agregados/imunologia , Baço/efeitos dos fármacos , Células Th1/metabolismo , Células Th2 , Vacinas/administração & dosagem , Vacinas/síntese química , Vacinas/química , Vacinas/farmacocinética
4.
Front Immunol ; 13: 838328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251032

RESUMO

Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis.


Assuntos
Atrofia/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , Mucosa Intestinal/imunologia , Nódulos Linfáticos Agregados/imunologia , Linfócitos B/imunologia , Humanos , Tecido Linfoide/imunologia , Macrófagos/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia
5.
Methods Mol Biol ; 2410: 305-324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914054

RESUMO

Peyer's patches are organized gut-associated lymphoid tissues (GALT) in the small intestine and the primary route by which particulate antigens, including viruses and bacteria, are sampled by the mucosal immune system. Antigen sampling occurs through M cells, a specialized epithelial cell type located in the follicle-associated epithelium (FAE) that overlie Peyer's patch lymphoid follicles. While Peyer's patches play an integral role in intestinal homeostasis, they are also a gateway by which enteric pathogens, like Salmonella enterica serovar Typhimurium (STm), cross the intestinal barrier. Once pathogens like STm gain access to the underlying network of mucosal dendritic cells and macrophages they can spread systemically. Thus, Peyer's patches are at the crossroads of mucosal immunity and intestinal pathogenesis. In this chapter, we provide detailed methods to assess STm entry into mouse Peyer's patch tissues. We describe Peyer's patch collection methods and provide strategies to enumerate bacterial uptake. We also detail a method for quantifying bacterial shedding from infected animals and provide an immunohistochemistry protocol for the localization of STm along the gastrointestinal tract and insight into pathogen transit in the presence of protective antibodies. While the protocols are written for STm, they are easily tailored to other enteric pathogens.


Assuntos
Salmonella typhimurium , Animais , Vacinas Bacterianas , Imunidade nas Mucosas , Mucosa Intestinal , Camundongos , Nódulos Linfáticos Agregados/imunologia
6.
J Neuroimmunol ; 362: 577764, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823118

RESUMO

Muscarinic-acetylcholine-receptors (mAChRs) modulate intestinal homeostasis, but their role in inflammation is unclear; thus, this issue was the focus of this study. BALB/c mice were treated for 7 days with muscarine (mAChR/agonist), atropine (mAChR/antagonist) or saline. Small-intestine samples were collected for histology and cytofluorometric assays in Peyer's patches (PP) and lamina propria (LP) cell-suspensions. In LP, goblet-cells/leukocytes/neutrophils/MPO+ cells and MPO/activity were increased in the muscarine group. In PP, IFN-γ+/CD4+ T or IL-6+/CD4+ T cell numbers were higher in the muscarine or atropine groups, respectively. In LP, TNF-α+/CD4+ T cell number was higher in the muscarine group and lower in the atropine.


Assuntos
Inflamação/imunologia , Mucosa Intestinal/imunologia , Receptores Muscarínicos/imunologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Agonistas Muscarínicos/farmacologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/imunologia
7.
Front Immunol ; 12: 761949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938288

RESUMO

The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer's patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer's patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer's patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.


Assuntos
COVID-19 , Imunidade nas Mucosas/imunologia , Imunossenescência/imunologia , Celulas de Paneth/imunologia , Nódulos Linfáticos Agregados/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2
8.
Front Immunol ; 12: 697725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804004

RESUMO

The intestinal mucosal immune environment requires multiple immune cells to maintain homeostasis. Although intestinal B cells are among the most important immune cells, little is known about the mechanism that they employ to regulate immune homeostasis. In this study, we found that CD11b+ B cells significantly accumulated in the gut lamina propria and Peyer's patches in dextran sulfate sodium-induced colitis mouse models and patients with ulcerative colitis. Adoptive transfer of CD11b+ B cells, but not CD11b-/- B cells, effectively ameliorated colitis and exhibited therapeutic effects. Furthermore, CD11b+ B cells were found to produce higher levels of IgA than CD11b- B cells. CD11b deficiency in B cells dampened IgA production, resulting in the loss of their ability to ameliorate colitis. Mechanistically, CD11b+ B cells expressed abundant TGF-ß and TGF-ß receptor II, as well as highly activate phosphorylated Smad2/3 signaling pathway, consequently promoting the class switch to IgA. Collectively, our findings demonstrate that CD11b+ B cells are essential intestinal suppressive immune cells and the primary source of intestinal IgA, which plays an indispensable role in maintaining intestinal homeostasis.


Assuntos
Linfócitos B/imunologia , Antígeno CD11b/imunologia , Colite Ulcerativa/imunologia , Colite/imunologia , Imunoglobulina A Secretora/imunologia , Nódulos Linfáticos Agregados/imunologia , Transferência Adotiva , Animais , Linfócitos B/patologia , Antígeno CD11b/genética , Colite/induzido quimicamente , Colite/patologia , Colite Ulcerativa/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Switching de Imunoglobulina , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nódulos Linfáticos Agregados/patologia , Transdução de Sinais , Proteína Smad2/metabolismo
9.
Front Immunol ; 12: 729607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804014

RESUMO

The mucosal immune system is the first line of defense against pathogens. Germinal centers (GCs) in the Peyer's patches (PPs) of the small intestine are constantly generated through stimulation of the microbiota. In this study, we investigated the role of γδ T cells in the GC reactions in PPs. Most γδ T cells in PPs localized in the GCs and expressed a TCR composed of Vγ1 and Vδ6 chains. By using mice with partial and total γδ T cell deficiencies, we found that Vγ1+/Vδ6+ T cells can produce high amounts of IL-4, which drives the proliferation of GC B cells as well as the switch of GC B cells towards IgA. Therefore, we conclude that γδ T cells play a role in sustaining gut homeostasis and symbiosis via supporting the GC reactions in PPs.


Assuntos
Linfócitos B/metabolismo , Centro Germinativo/metabolismo , Interleucina-4/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/microbiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Centro Germinativo/imunologia , Centro Germinativo/microbiologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Switching de Imunoglobulina , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/microbiologia , Ativação Linfocitária , Depleção Linfocítica , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Fenótipo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais
10.
Immunity ; 54(10): 2273-2287.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644558

RESUMO

Diets high in cholesterol alter intestinal immunity. Here, we examined how the cholesterol metabolite 25-hydroxycholesterol (25-HC) impacts the intestinal B cell response. Mice lacking cholesterol 25-hydroxylase (CH25H), the enzyme generating 25-HC, had higher frequencies of immunoglobulin A (IgA)-secreting antigen-specific B cells upon immunization or infection. 25-HC did not affect class-switch recombination but rather restrained plasma cell (PC) differentiation. 25-HC was produced by follicular dendritic cells and increased in response to dietary cholesterol. Mechanistically, 25-HC restricted activation of the sterol-sensing transcription factor SREBP2, thereby regulating B cell cholesterol biosynthesis. Ectopic expression of SREBP2 in germinal center B cells induced rapid PC differentiation, whereas SREBP2 deficiency reduced PC output in vitro and in vivo. High-cholesterol diet impaired, whereas Ch25h deficiency enhanced, the IgA response against Salmonella and the resulting protection from systemic bacterial dissemination. Thus, a 25-HC-SREBP2 axis shapes the humoral response at the intestinal barrier, providing insight into the effect of high dietary cholesterol in intestinal immunity.


Assuntos
Diferenciação Celular/imunologia , Hidroxicolesteróis/metabolismo , Imunoglobulina A/imunologia , Plasmócitos/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Colesterol na Dieta/imunologia , Colesterol na Dieta/metabolismo , Hidroxicolesteróis/imunologia , Imunoglobulina A/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Plasmócitos/metabolismo
11.
Cell Rep ; 36(10): 109655, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496253

RESUMO

The evolutionary strategy of transferring maternal antibodies via milk profoundly impacts the survival, lifelong health, and wellbeing of all neonates, including a pronounced impact on human breastfeeding success and infant development. While there has been increased recognition that interorgan connectivity influences the quality of a mother's milk, potentially to personalize it for her offspring, the underlying bases for these processes are incompletely resolved. Here, we define an essential role of Peyer's patches (PPs) for the generation of plasma cells that secrete maternal immunoglobulin A (IgA) into milk. Our metagenomic analysis reveals that the presence of certain residential microorganisms in the gastrointestinal (GI) tract, such as Bacteroides acidifaciens and Prevotella buccalis, is indispensable for the programming of maternal IgA synthesis prior to lactational transfer. Our data provide important insights into how the microbiome of the maternal GI environment, specifically through PPs, can be communicated to the next generation via milk.


Assuntos
Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Leite Humano/imunologia , Plasmócitos/citologia , Animais , Humanos , Imunoglobulina A/imunologia , Imunoglobulina A Secretora/imunologia , Camundongos , Nódulos Linfáticos Agregados/imunologia
12.
Nutrients ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445013

RESUMO

Bovine lactoferrin (bLf), a component of milk and a dietary supplement, modulates intestinal immunity at effector and inductor sites. Considering the regional difference in intestinal compartments and the dynamics of local cytokine-producing cells in the gut across time, the aim of this work was to characterize the effects of bLf on the proximal small intestine in a BALB/c murine model of oral administration. Male BALB/c mice were treated with oral bLf vs. saline control as mock by buccal deposition for 28 days. Intestinal secretions were obtained at different time points and cells were isolated from Peyer's patches (PP) and lamina propria (LP) of the proximal small intestine as representative inductor and effector sites, respectively. Total and specific anti-bLF IgA and IgM were determined by enzyme-immuno assay; the percentages of IgA+ and IgM+ plasma cells (PC) and cytokine-producing CD4+ T cells of PP and LP were analyzed by flow cytometry. We found that total and bLf-specific IgA and IgM levels were increased in the intestinal secretions of the bLf group in comparison to mock group and day 0. LP IgA+ PC and IgM+ PC presented an initial elevation on day 7 and day 21, respectively, followed by a decrease on day 28 in comparison to mock. Higher percentages of CD4+ T cells in LP were found in the bLf group. Cytokines-producing CD4+ T cells populations presented a pattern of increases and decreases in the bLf group in both LP and PP. Transforming growth factor beta (TGF-ß)+ CD4+ T cells showed higher percentages after bLf administration with a marked peak at day 21 in both LP and PP in comparison to mock-treated mice. Oral bLf exhibits complex immune properties in the proximal small intestine, where temporal monitoring of the inductor and effector compartments reveals patterns of rises and falls of different cell populations. Exceptionally, TGF-ß+ CD4+ T cells show consistent higher numbers after bLf intervention across time. Our work suggests that isolated measurements do not show the complete picture of the modulatory effects of oral bLf in immunological sites as dynamic as the proximal small intestine.


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Lactoferrina/administração & dosagem , Nódulos Linfáticos Agregados/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Administração Oral , Animais , Citocinas/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Fenótipo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo
13.
Int Immunol ; 33(9): 469-478, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34147033

RESUMO

The intracellular fragment of Notch1, a mediator of Notch signaling that is frequently detected in thymic immigrants, is critical for specifying T-cell fate in the thymus, where Delta-like 4 (Dll4) functions as a Notch ligand on the epithelium. However, as such Notch signaling has not been detected in mature T cells, how Notch signaling contributes to their response in secondary lymphoid organs has not yet been fully defined. Here, we detected the marked expression of Dll4 on the stromal cells and the active fragment of Notch1 (Notch1 intracellular domain, N1ICD) in CD4+ T cells in the follicles of Peyer's patches (PPs). In addition, N1ICD-bearing T cells were found in the T-cell zone of PPs, especially in the transcription factor Foxp3+ regulatory T (Treg) cells, with slight expression of Dll4 on the stromal cells. These fragments disappeared in Dll4-deficient conditions. It was also found that Notch1- and Notch2-deficient T cells preferentially differentiated into Treg cells in PPs, but not CXCR5+PD-1+ follicular helper T (Tfh) cells. Moreover, these phenotypes were also observed in chimeric mice reconstituted with the control and T-cell-specific Notch1/2-deficient bone marrow or Treg cells. These results demonstrated that Dll4-mediated Notch signaling in PPs is required for the efficient appearance of Tfh cells in a Treg cell-prone environment, which is common among the gut-associated lymphoid tissues, and is critical for the generation of Tfh-mediated germinal center B cells.


Assuntos
Nódulos Linfáticos Agregados/imunologia , Receptores Notch/imunologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Linfócitos B/imunologia , Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/imunologia , Centro Germinativo/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
14.
Eur J Immunol ; 51(8): 1980-1991, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34060652

RESUMO

High mobility group box-1 protein (HMGB1) is an alarmin that, once released, promotes inflammatory responses, alone and as a complex with the chemokine CXCL12. Here, we report that the HMGB1-CXCL12 complex plays an essential role also in homeostasis by controlling the migration of B lymphocytes. We show that extracellular HMGB1 is critical for the CXCL12-dependent egress of B cells from the Peyer's patches (PP). This promigratory function of the complex was restricted to the PPs, since HMGB1 was not required for B-cell migratory processes in other locations. Accordingly, we detected higher constitutive levels of the HMGB1-CXCL12 complex in PPs than in other lymphoid organs. HMGB1-CXCL12 in vivo inhibition was associated with a reduced basal IgA production in the gut. Collectively, our results demonstrate a role for the HMGB1-CXCL12 complex in orchestrating B-cell trafficking in homeostasis, and provide a novel target to control lymphocyte migration in mucosal immunity.


Assuntos
Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Imunidade nas Mucosas/imunologia , Nódulos Linfáticos Agregados/metabolismo , Animais , Linfócitos B/imunologia , Quimiocina CXCL12/imunologia , Quimiotaxia de Leucócito/imunologia , Proteína HMGB1/imunologia , Homeostase/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nódulos Linfáticos Agregados/imunologia
15.
Cell Mol Gastroenterol Hepatol ; 12(3): 873-889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34058415

RESUMO

BACKGROUND & AIMS: Microfold cells (M cells) are immunosurveillance epithelial cells located in the Peyer's patches (PPs) in the intestine and are responsible for monitoring and transcytosis of antigens, microorganisms, and pathogens. Mature M cells use the receptor glycoprotein 2 (GP2) to aid in transcytosis. Recent studies have shown transcription factors, Spi-B and SRY-Box Transcription Factor 8 (Sox8). are necessary for M-cell differentiation, but not sufficient. An exhaustive set of factors sufficient for differentiation and development of a mature GP2+ M cell remains elusive. Our aim was to understand the role of polycomb repressive complex 2 (PRC2) as an epigenetic regulator of M-cell development. Estrogen-related-receptor γ (Esrrg), identified as a PRC2-regulated gene, was studied in depth, in addition to its relationship with Spi-B and Sox8. METHODS: Comparative chromatin immunoprecipitation and global run-on sequencing analysis of mouse intestinal organoids were performed in stem condition, enterocyte conditions, and receptor activator of nuclear factor κ B ligand-induced M-cell condition. Esrrg, which was identified as one of the PRC2-regulated transcription factors, was studied in wild-type mice and knocked out in intestinal organoids using guide RNA's. Sox8 null mice were used to study Esrrg and its relation to Sox8. RESULTS: chromatin immunoprecipitation and global run-on sequencing analysis showed 12 novel PRC2 regulated transcription factors, PRC2-regulated Esrrg is a novel M-cell-specific transcription factor acting on a receptor activator of nuclear factor κB ligand-receptor activator of nuclear factor κB-induced nuclear factor-κB pathway, upstream of Sox8, and necessary but not sufficient for a mature M-cell marker of Gp2 expression. CONCLUSIONS: PRC2 regulates a significant set of genes in M cells including Esrrg, which is critical for M-cell development and differentiation. Loss of Esrrg led to an immature M-cell phenotype lacking in Sox8 and Gp2 expression. Transcript profiling: the data have been deposited in the NCBI Gene Expression Omnibus database (GSE157629).


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Mucosa Intestinal/imunologia , Camundongos , NF-kappa B/metabolismo , Nódulos Linfáticos Agregados/imunologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais
16.
PLoS One ; 16(5): e0251784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34003877

RESUMO

We evaluated whether the water dispersibility of lactic acid bacteria (Enterococcus faecalis KH2) affects their efficacy. When cultured lactic acid bacteria are washed, heat-killed, and powdered, adhesion occurs between results in aggregation (non-treated lactic acid bacteria, n-LAB). However, dispersed lactic acid bacteria (d-LAB) with a lower number of aggregates can be prepared by treating them with a high-pressure homogenizer and adding an excipient during powdering. Mice were administered n-LAB or d-LAB Peyer's patches in the small intestine were observed. Following n-LAB administration, a high amount of aggregated bacteria drifting in the intestinal mucosa was observed; meanwhile, d-LAB reached the Peyer's patches and was absorbed into them. Evaluation in a mouse influenza virus infection model showed that d-LAB was more effective than n-LAB in the influenza yield of bronchoalveolar lavage fluids on day 3 post-infection and neutralizing antibody titers of sera and influenza virus-specific immunoglobulin A in the feces on day 14 post-infection. Therefore, the physical properties of lactic acid bacteria affect their efficacy; controlling their water dispersibility can improve their effectiveness.


Assuntos
Enterococcus faecalis , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae , Nódulos Linfáticos Agregados/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar , Imunoglobulina A/imunologia , Pulmão/imunologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle
17.
Cell Rep ; 35(2): 108995, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852847

RESUMO

The complement fragment C5a is closely associated with adaptive immune induction in the mucosa. However, the mechanisms that control CD8+ T cell responses by C5a have not been extensively explored. This study reveals that C5/C5a in the Peyer's patch (PP) subepithelial dome increases upon oral Listeria infection. We hypothesize that C5aR+ PP cells play an important role in the induction of antigen-specific T cell immunity. Using single-cell RNA sequencing, we identify C5aR- and lysozyme-expressing dendritic cells (C5aR+ LysoDCs) in PP and examine their role in CD8+ T cell immune induction. Stimulation of C5aR+ LysoDCs by C5a increases reactive oxygen species levels, leading to efficient antigen cross-presentation, which elicits an antigen-specific CD8+ T cell response. In C5-deficient mice, oral co-administration of C5a and Listeria enhances Listeria-specific cytotoxic T cell levels. Collectively, these findings suggest a role of the complement system in intestinal T cell immunity.


Assuntos
Complemento C5a/imunologia , Apresentação Cruzada , Mucosa Intestinal/imunologia , Listeria monocytogenes/imunologia , Nódulos Linfáticos Agregados/imunologia , Receptor da Anafilatoxina C5a/genética , Linfócitos T Citotóxicos/imunologia , Imunidade Adaptativa , Animais , Apresentação de Antígeno , Complemento C5a/genética , Complemento C5a/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunidade nas Mucosas , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Listeria monocytogenes/patogenicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/microbiologia , Muramidase/genética , Muramidase/imunologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/microbiologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptor da Anafilatoxina C5a/imunologia , Análise de Célula Única , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/microbiologia
18.
Nat Immunol ; 22(4): 510-519, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33707780

RESUMO

Fibroblastic reticular cells (FRCs) determine the organization of lymphoid organs and control immune cell interactions. While the cellular and molecular mechanisms underlying FRC differentiation in lymph nodes and the splenic white pulp have been elaborated to some extent, in Peyer's patches (PPs) they remain elusive. Using a combination of single-cell transcriptomics and cell fate mapping in advanced mouse models, we found that PP formation in the mouse embryo is initiated by an expansion of perivascular FRC precursors, followed by FRC differentiation from subepithelial progenitors. Single-cell transcriptomics and cell fate mapping confirmed the convergence of perivascular and subepithelial FRC lineages. Furthermore, lineage-specific loss- and gain-of-function approaches revealed that the two FRC lineages synergistically direct PP organization, maintain intestinal microbiome homeostasis and control anticoronavirus immune responses in the gut. Collectively, this study reveals a distinct mosaic patterning program that generates key stromal cell infrastructures for the control of intestinal immunity.


Assuntos
Linhagem da Célula , Fibroblastos/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Nódulos Linfáticos Agregados/imunologia , Animais , Comunicação Celular , Células Cultivadas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Interações Hospedeiro-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/virologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/patogenicidade , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Nódulos Linfáticos Agregados/virologia , Fenótipo , Análise de Célula Única , Transcriptoma
19.
J Mol Med (Berl) ; 99(4): 517-530, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538854

RESUMO

The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.


Assuntos
Células Epiteliais/imunologia , Trato Gastrointestinal/imunologia , Imunidade Inata , Organoides , Adulto , Animais , Bancos de Espécimes Biológicos , Polaridade Celular , Previsões , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica , Células Caliciformes/imunologia , Humanos , Tolerância Imunológica , Recém-Nascido , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Camundongos , Modelos Imunológicos , NF-kappa B/fisiologia , Especificidade de Órgãos , Organoides/citologia , Organoides/imunologia , Celulas de Paneth/imunologia , Nódulos Linfáticos Agregados/imunologia , Células-Tronco/imunologia , Receptores Toll-Like/imunologia
20.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008744

RESUMO

Viral infections increase the risk of developing allergies in childhood, and disruption of mucosal homeostasis is presumed to be involved. However, no study has reported a role for viral infections in such disruption. In this study, we clarified the mechanism of immunoglobulin A (IgA) overproduction in viral infections. Autopsies were performed on 33 pediatric cases, IgA and interferon (IFN)ß levels were measured, and histopathological and immunohistochemical examinations were conducted. Furthermore, we cultured human cells and measured IFNß and IgA levels to examine the effect of viral infections on IgA production. Blood IgA levels in viral infections were higher than in bacterial infections. Moreover, IFNß levels in most viral cases were below the detection limit. Cell culture revealed increased IgA in gastrointestinal lymph nodes, especially in Peyer's patches, due to enhanced IFNß after viral stimulation. Conversely, respiratory regional lymph nodes showed enhanced IgA with no marked change in IFNß. Overproduction of IgA, identified as an aberration of the immune system and resulting from excessive viral infection-induced IFNß was observed in the intestinal regional lymph nodes, particularly in Peyer's patches. Further, increased IgA without elevated IFNß in the respiratory system suggested the possibility of a different mechanism from the gastrointestinal system.


Assuntos
Imunidade , Intestinos/imunologia , Linfonodos/imunologia , Viroses/imunologia , Autopsia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Criança , Feminino , Humanos , Imunoglobulina A/sangue , Lactente , Recém-Nascido , Interferon beta/sangue , Intestinos/patologia , Linfonodos/patologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/imunologia , Poli I-C/farmacologia , Valores de Referência , Viroses/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA